+375 29 594 74 05
 Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

Передача электроэнергии на большие расстояния

Передача электроэнергии на большие расстояния - 4.4 из 5, основанный на 17 голосах

Рейтинг:  4 / 5170Передача электроэнергии на большие расстояния

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна
 

 

Передача новостей на большие расстояния всего пару сотен лет назад казалась чем-то из области фантастики. Время почтовых голубей, издревле использовавшихся римлянами, персами, и египтянами, прошло после изобретения телеграфной связи. С уверенностью можно сказать, что с передачей энергии на большие дистанции в те же периоды истории дела обстояли гораздо хуже. Проводники с высоким сопротивлением, низкое напряжение, серьезная коммерческая борьба за использование постоянного тока – лишь некоторые из факторов, тормозивших развитие электрических систем и сетей.

Ни для кого не секрет, что энергетику можно назвать достаточно консервативной отраслью. Если сравнивать скорость развития тепло- и электроэнергетики с прогрессом в информационных технологиях за одинаковые периоды времени, то разница чувствуется особенно резко. Окружающие нас сенсорные дисплеи с ультравысоким разрешением, искусственный интеллект, повсеместный и универсальный доступ к сети Интернет заметно развились с начала этого столетия. Однако опоры линий электропередачи (ЛЭП) до сих пор несут на себе тысячи километров сталеалюминиевыех проводов, перегрузки предотвращаются автоматическими выключателями, не сильно изменившимися за последние 70 лет. Суперпроводники, работающие при комнатной температуре, так и остались артефактами на страницах научных журналов и научно-популярной литературы. Чем же вызвана кажущаяся неповоротливость энергетики? Какие факторы на это влияют? И как вообще происходит передача электроэнергии на большие расстояния? Обо всем по порядку.

Как отмечалось выше, исторически сложилось, что изначально сторонников передачи электричества с использованием постоянного тока было больше. Такой перевес не был обусловлен точными расчетами, имела место пропаганда в СМИ и реклама. Почему же сейчас в контексте передачи электроэнергии мы слышим лишь о переменном токе?

Все начинается с электростанций. И для производителей, и для потребителей электроэнергии экономически выгодно иметь один централизованной источник энергии, а не множество разрозненных. От таких центров питания финансово целесообразно прокладывать ЛЭП к потребителям. Как известно, мощность (а в каждый момент времени по проводам передается именно мощность) равна произведению напряжения на ток. Для получения одной и той же мощности можно либо увеличить ток и снизить напряжение, либо сделать наоборот.

Случай с низким напряжением и высоким током очень неэффективный, при такой стратегии потери электроэнергии на длинных ЛЭП могут составлять 60 и более процентов. Случай с высоким напряжением и низким током гораздо более выгодный. При использовании постоянного тока увеличение уровня напряжения составляет серьезную проблему, а вот с переменным этого добиться очень просто. Трансформаторы – это электрические машины, преобразующие электрическую мощность с низкого напряжения в мощность с высоким напряжением. Чем длиннее ЛЭП, тем под более высоким напряжением находятся ее провода. Кроме того, бесчисленное количество заводов и предприятий используют электродвигатели. Двигатели постоянного тока в сравнении с двигателями переменного тока безусловно проигрывают: их КПД ниже, в них больше трущихся частей, их конструкция сложнее. Поэтому большинство электродвигателей в мире – это двигатели переменного тока.

Теперь, зная ответ на вопрос, почему победа осталась за переменным током, можно взглянуть на энергосистему с большей высоты. Различные электростанции в разных уголках планеты производят электричество. Говоря упрощенно, от электрогенераторов на станциях провода тянутся к трансформаторной подстанции (ТП), повышающей напряжение до 35, 110, 330, или 750 кВ. Провода на опорах оттуда тянутся к потребителям – в города и на заводы, где напряжение снова понижается на понижающих ТП до уровня, необходимого потребителю. Это напряжения в 0.4, 1, 10 кВ. Точка, в которой соединяются две и более ЛЭП, называется электрической подстанцией. Таким образом различные электростанции одной страны связываются в одну энергосистему, а энергосистемы разных стран – в объединенную энергосистему.

Трансформатор на подстанции

Передача энергии на большие расстояния – это всегда вопрос компромисса. Что выгоднее: строить новую электростанцию или прокладывать ЛЭП от существующих станций на огромное расстояние? Например, суммарная протяженность ЛЭП в Беларуси на начало 2019 года составляла почти 280 000 км. Где и как строить линию электропередачи? При монтаже опор огромное значение играет рельеф местности и характер грунта, а также наличие населенных пунктов, дорог и деревьев.

От потребляемой мощности зависит напряжение сети. От мощности, напряжения, и, как ни странно, погоды зависит выбор проводов, изоляторов и опор. При строительстве энергоемких предприятий надо решить: питаться от существующей подстанции или монтировать ТП в цеху? В целом при строительстве объектов решается вопрос о категории электроснабжения, то есть нужно ли прокладывать резервные линии и если да, то сколько? Отдельный и сложный вопрос представляет собой устойчивость энергосистемы, то есть ее способность функционировать, когда пропадает питание от электростанций или ЛЭП вследствие запланированного ремонта или аварии.  

Ротор турбогенератора

На данный момент принимается множество решений для модернизации энергосистем, например, привычные провода заменяют на алюминиевые с композитным тросом вместо стального. Это уменьшает провис проводов, увеличивает безопасную зону вокруг ЛЭП и их надежность. В целом же человечество еще не вышло на революционно новые методы производства и передачи электроэнергии.

Пожалуй, можно сказать, что в современном мире электроэнергетика находится на третьем месте после воздуха и воды. Миллионы километров проводов и кабелей смонтированы, огромные генераторы (диаметром до 16 метров) прочно закреплены на земной поверхности, это и объясняет вынужденную неповоротливость и стратегическую важность высоковольтной электроэнергетики.

Для обслуживания и проверки ЛЭП и электрических сетей существуют лаборатории электрофизических измерений. К таким, например, относится компания «ТМРсила-М», имеющая многолетний опыт работы в энергетике и сформированная из опытных специалистов.

Всегда рады  знакомству 
    • Местоположение

      220026, РБ, г. Минск, переулок Бехтерева 8, пом. 308

      Пн-Пт: 8:00 – 18:00 

      Читай нас здесь

              

    • Заказать звонок

      Заказ обратного звонка

      В настоящее время наш рабочий день закончен. Оставьте свой телефон и мы перезвоним в удобное для вас время!

      Заказ обратного звонка

      Ваш заявка принята. Ожидайте звонка.